
COMP3161/COMP9164: Preliminaries

Gabriele Keller Johannes Åman Pohjola*

September 26, 2024

1 Introduction

As we are going to discuss and reason about properties of various programming languages and
language features, we need a formal meta-language which allows us to make statements about
these properties. We need to specify the grammar of a language, the static semantics (often in
form of typing and scoping rules) and dynamic semantics. Fortunately, it turns out that a single
formalism, inductive definitions built on inference rules, is sufficient.

2 Judgements and Inference Rules

A judgement is simply a statement that a certain property holds for a specific object,1 for example:

� 3 + 4 ∗ 5 is a valid arithmetic expression

� the string ”aba” is a palindrome

� 0.43423 is a floating point value

Judgements are not unlike predicates you might know from Predicate Logic. We write

a S

for a judgement of the form The property S holds for object a. In predicate logic, this is usually
written differently, as S(a). However, we will see later that for our purposes, it is much more
convenient to write it in the above given post-fix notation. Alternatively, we can interpret S as a
set of objects with a certain property, and read the judgement a S as: a is an element of the set
S. Some examples of judgements and how to read them are:

- 5 even

– 5 is even, or

– 5 is an element of the set of even numbers

- 3 + 4 ∗ 5 expr

– 3 + 4 ∗ 5 is a syntactically correct expression, or

– 3 + 4 ∗ 5 an element of the set containing all syntactically correct expressions

- 0.43423 float

*Minor edits and clarifications. Gabriele is the main author.
1More generally, a relationship between a number of objects holds. For now, we just look at statements about

a single object.

1

– 0.43423 is a floating point value

– 0.43423 is an element of the set of floating points values

Judgements by themselves would be boring and fairly useless. Most interesting sets have an infinite
number of elements, and to define such a set it would obviously be impossible to explicitly list
them all using simple judgements. Luckily, the sets we are interested in are not random collections
of objects: they can be systematically defined by so-called inference rules.

Inference rules allow us to combine judgements to obtain new judgements. They have the
following general form:

If judgements J1, and J2, and . . . and Jn are inferable, then the judgement J is inferable

and are usually given in the following standard form:

J1 J2 . . . Jn
J

where the judgements J1 to Jn are called premises, and J is called a conclusion. An inference
rule does not have to have premises, it can consist of a single conclusion. Such inference rules are
called axioms. But let us have a look at a concrete example now.

We start by defining some simple properties over the set of natural numbers (Nat). For
simplicity reasons, we represent them as 0, (s 0), (s (s 0)), (s(s(s 0))) for 0, 1, 2, 3, and so on (s
here stands for successor). So, first of all, how can we define Nat itself using inference rules?
Listing all the element of Nat would be equivalent to including an axiom for each number:

0 Nat

(s 0) Nat

(s (s 0)) Nat

...

Apart from the first rule, all the rules have the form

(s x) Nat

where x Nat has been established by the previously listed axiom. In words, we have

1. 0 is in Nat, and

2. for all x, if x is in Nat, then (s x) in Nat

which can be translated directly into the following two inference rules:

0 Nat

x Nat

(s x) Nat

where x is a variable that can be instantiated to any term. In the same way, we can define the
sets Even and Odd :

0 Even

x Even

(s(s x)) Even (s 0) Odd

x Odd

(s(s x)) Odd

Rules do work in two ways: we can use them to define a property, but we can also use them
to show that a judgement is valid. How does it work with inference rules? Assume we want to
show that some judgement J is valid. We have to look for a rule which has J as a conclusion. If
this rule is an axiom, we are already done. If not, we have to show that all of its premises are

2

valid by recursively applying the same strategy to all of them. For example, we can show that
(s(s 0))Even, since

0 Even

(s(s 0)) Even

and

0 Even

As the last rule is an axiom, there are no premises left to prove, and we are done.
Similarly, we can show that 0 + 1 + 1 + 1 + 1 Even. An alternative and often quite convenient

way to write inference proofs is to stack the rules we apply together and draw a “proof tree” —
in our example, more a proof stack, since each rule has just a single premise.

(s 0) Odd

(s(s(s 0))) Odd

(s(s(s(s(s 0))))) Odd

Note that inference works on a purely syntactic basis. Given the rules above, we are not able
to prove 2 Even, even though we can show that s(s(0)) Even, and we know that s(s(0)) is equal
to 2. We cannot apply that knowledge, since we have no rule which tells us it is ok to do so. We
just mechanically manipulate terms according to the given rules.

Let us look at a slightly more interesting example: we want to define the languageM which
contains all expressions of properly matched parentheses (and no other characters):2

M = {ϵ, (), ()(), ()()(), . . . , (()), ((())), . . . , ()(()), ()()(()), . . .}

Again, let us start by describing the rules in (semi-)natural language. There are basically two
ways to “legally” combine parentheses: we can either nest them, or concatenate them:

1. The empty string (denoted by ϵ) is in M

2. If s1 and s2 are in M , then s1s2 is in M

3. If s is in M , then (s) is in M

Again, these rules can be directly translated into inference rules:

(1)
ϵ M

(2)
s1 M s2 M

s1s2 M

(3)
s M

(s) M

How can we show that ()(()) is in M ? As we did previously, we check if there is a rule whose
conclusion matches the judgement we want to infer. If we apply Rule (2), we have to show that
both () and (()) are in M . Since () = (ϵ), we can apply Rule (3), and only have to show that ϵ is
in M (Rule (1)). By applying Rule (3) in the same way, we can show that (()) is in M as well,
and we are done. This argument can be captured in the following proof tree:

ϵ M
(1)

() M
(3)

ϵ M
(1)

() M
(3)

(()) M
(3)

()(()) M
(2)

2ϵ represents the empty string

3

Finding a proof tree is not always as straightforward as it seems. Sometimes, multiple rules
may be applicable to a judgement, or a single rule may be applicable in more than one way. Some
of these may be dead ends.

For example, instead of applying Rule (2) above, we could also have tried Rule (3). The latter
rule has only a single premise, so we only have to prove that)(() is in M . The only rule that’s
applicable now is Rule (2), and we could apply it in several different ways resulting in different
premises:

) M (() M

)(() M
or

)(M () M

)(() M
or

)((M) M

)(() M

In the first application, we end up with the premise:) is in M . But there is no rule which we
can apply to get rid of it. This is not that surprising, since M should only contain expressions
of properly matched parentheses, and neither) nor)(() are such. So, by choosing the wrong
rule, or applying the right rule in the wrong way—for example, splitting ()() up into ()(and
)—we can easily end up with premises that are not actually valid, reaching a dead end. In our
example, this was not hard to see. It can be extremely difficult to decide which rule to apply and
how, without some background knowledge about the objects and properties, as there might be an
infinite number of possibilities. This is one reason why it is not possible to write a program which
automatically derives judgements, that is guaranteed to find such a derivation if it exists.3 It is,
however, possible to write semi-automatic theorem provers, which come up with proofs in cases
where it is fairly standard, and rely on user input otherwise.

2.1 Derivable and Admissible Rules

Consider what would happen if we added the following rule to the language M :

(4)
s M

((s)) M

Does this change the set M in any way? That is, is there a string s for which we can infer s M if
we use (4), but not otherwise? This doesn’t seem very likely: the rule just says that, if a string
s is in M it is ok to add two pairs of matching parentheses. Since we already had a rule which
allows us to add one pair of parentheses, we can just apply this rule twice and achieve the same
effect:

s M

(s) M
((s)) M

This means that Rule (4) is derivable from the existing rules.
In all the previous rules, the strings in the premises were simpler than the string in the con-

clusion. The following rule is different in this respect:

(5)
()s M

s M

Interestingly, although Rule (5) does not introduce any new strings to M , the rule is also not
derivable from any of the existing rules. Such a rule is called admissible.

3If it was possible, mathematicians and theoretical computer scientists would be out of a job.

4

2.2 Inductive Definitions

A set of inference rules R defining a set A is called an inductive definition of A, if the set of valid
judgements s A are precisely those judgements that can be derived using R. All the examples we
have discussed are inductive definitions.

Not all sets can be defined using inductive definitions. For example, while natural numbers
are one of the standard examples of such sets, real numbers cannot be defined in such a way.

2.3 Judgements and Relations

So far, we defined a judgement to be a statement about a property of an object. We can generalise
this definition to relation between a number of objects. Consider the following inductive definition
of the relation “a < b” on natural numbers. For convenience reasons, we choose an infix notation
here:

n Nat

0 < (s n)

n < m

(s n) < (s m)

As before, we can also view this as an inductive definition of a set. In this case, a set of pairs,
where (a, b) ∈ (<) if and only if a is less than b.

3 Rule Induction

Natural deduction—the process of deriving judgements from inference rules outlined above—is
sometimes not powerful enough by itself. For example, although we can see that the Rule (5)
in Section 2.1 is valid for every string s in M , we cannot show this by simply combining the
existing rules. We will therefore introduce another proof technique here, called induction. You
will probably know induction over natural numbers and structural induction from mathematics
and previous courses. Both are special cases of a more general induction principle called rule
induction.

Let us go back to our previous example set M of properly matched parentheses. The rules 1
to 3 provide an inductive definition of M :

(1)
ϵ M

(2)
s1 M s2 M

s1s2 M

(3)
s M

(s) M

Now, let us assume we want to prove some property P of the strings in M , that is: show that if
s M then s P . Since we know that there is a derivation for each s M , we only need to show that:

� ϵ P

� if s1 P and s2 P , then s1s2 P

� if s P , then (s) P

Which in essence corresponds to the original rules only with M replaced by P . For example, if we
want to show that all s in M have the same number of opening and closing brackets, we need to
prove the following statements (where open and close denotes the number of opening and closing
brackets, respectively):

5

1. open(ϵ) = close (ϵ)

Proof: open(ϵ) = 0 = close (ϵ)

2. if open(s1) = close (s1) and open(s2) = close (s2) then open(s1s2) = close (s1s2)

For the proof, we assume that the statements corresponding to the judgements in the
premises of the rules hold. These assumptions are called the induction hypothesis.

� Induction Hypothesis 1: open(s1) = close (s1)

� Induction Hypothesis 2: open(s2) = close (s2)

Proof: open(s1 s2) = open(s1) + open (s2) = close(s1) + close (s2) = close (s1 + s2)

3. if open(s) = close (s) then open((s))

� Induction Hypothesis 1: open(s) = close (s)

Proof:

open((s))

= {property of open}
open(() + open(s) + open())

= {property of open}
1 + open(s) + 0

= {Induction Hypothesis,Arithmetic}
1 + close(s) + 0

= {property of close}
close(() + close(s) + close())

= {property of close}
close((s))

In the proof, we used the rules of arithmetic, and that properties of close and open, such as
open(() = close ()) = 1, and open()) = close(() = 0. In a fully formal proof, we would also
need a formal definition of these two functions.

3.1 Ambiguity

The definition of M , although correct, has an undesirable property: for any string in M , we do
not have just one derivation, but an infinite number of possible derivations, since any string s
can be split into ϵ and s by applying Rule (2), and then Rule (1) to get rid of ϵ. However, this
derivation step is completely unnecessary.

Fortunately, we can come up with an alternative set of rules, where we have exactly one
derivation for each string in the set. We can interpret each string as a possibly empty list (L) of
non-empty parenthesis expressions (N) according to the following inference rules:

(1)
ϵ L

(2)
s1 N s2 L

s1s2 L

(3)
s L

(s) N

The interesting point here is that L and N are defined in terms of each other: we have a mutually
recursive definition.

6

Let us look at one more example of an ambiguous definition: simple arithmetic expressions,
given here both in EBNF form and as inductive definition using inference rules:

The EBNF

Expr → int | (Expr) | Expr + Expr | Expr * Expr

describes the same language as the following set of inference rules. We assume that int represents
an integer constant, and that integer constant expressions are already defined in some suitable
way:

i int

i Expr

e Expr

(e) Expr

e1 Expr e2 Expr

e1 + e2 Expr

e1 Expr e2 Expr

e1 * e2 Expr

Although in this case, there is not an infinite number of possible derivations for each expression,
every expression which contains more than a single arithmetic operation can still be derived in
more than one way:

1 int

1 Expr

2 int

2 Expr

1 + 2 Expr

3 int

3 Expr

1 + 2 ∗ 3 Expr

1 int

1 Expr

2 int

2 Expr

3 int

3 Expr

2 ∗ 3 Expr

1 + 2 ∗ 3 Expr

Although both derivations are correct with respect to the rules given, the second derivation
is more appropriate for an arithmetic expression, as it decomposes the expression first into two
summands. We give an alternative definition, which takes precedence and associativity of the
operators into account:

e1 SExpr e2 PExpr

e1 + e2 SExpr

e PExpr

e SExpr

e1 PExpr e2 FExpr

e1 * e2 PExpr

e FExpr

e PExpr

e SExpr

(e) FExpr

i int

i FExpr

The unambiguous grammar is, again, much more complicated than the original grammar, even for
such a simple language. This is not surprising, as it contains additional structural information.
For programming languages, ambiguous grammars are problematic, as they may allow different
interpretations of programs, and are therefore usually avoided.

3.2 Simultaneous Induction

How can we apply the principle of rule induction to mutually recursive definitions like those of L
and SExpr? In most cases, we have to generalise the proof goal. For example, if we want to show
the following property for all e in SExpr : that e SExpr implies e PExpr . By the principle of rule
induction we have to show:

� Assuming

7

- e = e1 + e2

- e1 SExpr

- e2 PExpr

and the Induction Hypothesis

- e1 P

show that e1 + e2 P

� under the assumption that

- e PExpr

show that e P

The problem is that, since we are only trying to show something about SExpr , the induction
hypothesis does not say anything about e2 (we only know that e2 PExpr . The case for the second
rule will have a similar problem for e. In most cases, this is not enough to prove anything. The
solution is often to try and prove a more general statement instead, which leads to a stronger
induction hypothesis. If we try to show, for instance, that e SExpr or e PExpr or e FExpr implies
e P , we have more cases to cover on one hand (one for each inference rule which has PExpr,
SExpr or FExpr in the conclusion), on the other hand the induction hypothesis now covers all the
premises in the rules:

� Assuming

- e = e1 + e2

- e1 SExpr

- e2 PExpr

and the Induction Hypothesis

- e1 P

- e2 P

show that e1 + e2 P

� under the assumption that

- e PExpr

and the Induction Hypothesis

- e P

show that e P (trivial)

� under the assumption that

- e = e1 ∗ e2

- e1 SExpr

- e2 PExpr

and the Induction Hypothesis

- e1 P

- e2 P

show that e1 ∗ e2 P

� . . .

8

4 Examples

4.1 Boolean Expressions

As another example, consider boolean expressions. For simplicity, we only include three operators
for now: ∧, ∨, and ¬, the constants True and False, and parentheses. Our first attempt at defining
a set of inference rules to characterise boolean expressions might look as follows:

True BExpr False BExpr

e BExpr

¬e BExpr

e BExpr

(e) BExpr

e1 BExpr e2 BExpr

e1 ∧ e2 BExpr

e1 BExpr e2 BExpr

e1 ∨ e2 BExpr

Unfortunately, with this set of rules, we have the same problem we had with our rules for
arithmetic expressions. Even though they inductively define the set of boolean expressions, they
are ambiguous and do not reflect associativity and precedence of the operators. So, we need
to come up with an alternative definition. The operator ¬ has the highest precedence, ∨ the
lowest, and both ∧ and ∨ are right associative. The solution is also similar to the solution for
arithmetic expressions. First, we need rules to define the subset of boolean expressions which can
be arguments of the operator with the highest precedence, negation. These can only be atomic
expressions (constants), any expression in parentheses, or such an expression preceded by negation.
Let’s call this subset NBExpr. We call the boolean expressions we generate with the new rules
BExpr.

True NBExpr False NBExpr

e NBExpr

¬e NBExpr
e BExpr

(e) NBExpr

The rules for the operators ∧ and ∨ correspond to those for addition and multiplication. Since
the operators are right associative, the expression on the left side can only be an expression with
stronger cohesion than the one on the right hand side. For the ∧ operator, it has to be NBExpr.

e1 NBExpr e2 ABExpr

e1 ∧ e2 ABExpr

e1 ABExpr e2 BExpr

e1 ∨ e2 BExpr

And finally we need rules to express the fact that NBExpr ⊆ ABExpr ⊆ BExpr

e NBExpr

e ABExpr

e ABExpr

e BExpr

4.2 More Arithmetic

We can define addition on natural numbers inductively as a relation between three numbers n,m,
and k, where n+m = k.

(Add1)
n Nat

0 + n = n

(Add2)
n+m = k

(s m) + n = (s k)

9

The rule

n Nat

n+ 0 = n

is not derivable from Add1 and Add2, but it is admissible. You can show that this is the case using
induction over natural numbers. Similarly, for the following rule:

n+m = k

m+ n = k

Acknowledgements These lecture draw on material from the draft book on Programming Lan-
guages: Theory and Practice, Robert Harper, and contain examples taken from Frank Pfenning’s
lecture notes for the CMU course Foundations of Programming Languages.

10

